【授業☆しょ~かい】後期に向け『三角関数の直交性 』を学んだよ! 電子技術科(都留キャンパス)No.066

2019年09月05日

こんにちは。あんどくんです。
電子技術科をPRしているよ!
みんな、令和元年もリアルに応援よろしくね (*´ω`)/
今日、令和元年9月4日(水)は、2限に1年生の 『電気数学Ⅰ』、3限に2年生の『電子回路設計』、4限には1年生の『組込みプログラミング実習Ⅰ』におじゃましたんだ。

1年生の『電気数学Ⅰ』は、今回が最終回で、『三角関数の直交性』について学んだんだよ。『三角関数の直交性』 は、電子回路の解析で用いる『フーリエ級数展開』を学ぶうえで、とっても重要なんだよ。

 

三角関数の直交性』は、三角関数の関係式を使って、簡単に導けるんだ。

 

二つの関数 f (x) と g (x) の積を、変数 x について 0 から 2π まで定積分するとき、この定積分を記号  < f (x) | g (x) > で表すと、『三角関数の直交性』は、 つぎの3式:

       < sin mx | sin nx > = π δmn
       < sin mx | cos nx > = 0
       < cos mx | cos nx > = π δmn

で表されるんだよ ( m n は自然数)。

 

記号 δmn は、『クロネッカーのデルタっていって、m = n のとき δmn = 1、mn のとき δmn = 0 になる数因子なんだ。

 

今回は、この3式を演習問題として導いたんだよ。

 

3限におじゃました2年生の『電子回路設計』では、LTC (ライントレースカー) の製作を題材として、『技術論文の作法』について学んでいるんだ。

 

今回が最終回で、3.2節の『センサ回路の動作原理』を仕上げて、ページ番号を付け、文章の体裁を整えて、印刷して提出したんだ。

 

4限におじゃました 、『組込みプログラミング実習Ⅰ』では、筆記試験の最中だったんだよ。

 

プログラムを設計する問題も、出題されたみたいだね。
みんな、真剣に試験問題に取り組んでいたよ。

 

それじゃ、帰るよ ≡3
結構、雨降ってるよ・・・☂️

 

みんな、今日も1日おつかれさま ☆彡
あと少しで前期が終了だね。引き続きがんばろっ٩( ‘ω’ )و
今日も『産短大の毎日』をみてくれてありがとう!
また、明日からがんばろっ٩( ‘ω’ )و

それじゃ ≡3 ≡3 ≡3

★学生募集中★
県内イチ♪ 最新の設備と最高のスタッフで、みなさんをお待ちしています♪ 2年間で電子工学の理論を学んで、最新の電子技術を身に付けるんだったら、『電子技術科☆都留キャンパス』で決まりだね!
詳細はお問い合わせください。
入試情報・・・http://www.yitjc.ac.jp/yitjc/admissions.html

★お問い合わせ先★
山梨県立産業技術短期大学校 都留キャンパス
〒402-0053 山梨県都留市上谷5-7-35
TEL 0554-43-8911(代)